Mathsarc Education

A learning place to fulfil your dream of success!

IIT JEE Main/Adv

Function, L. C. D.

SECTION - A (MATHEMATICS)

SECTION - I

MULTI OPTION CORRECT (+ 4, - 1, 0)

- 1. Given that *f* is a real valued non-constant differentiable function such that f(x). $f'(x) \le 0$, for all real *x*, then it follows that:
 - (A) $f^2(x)$ is increasing function (B) $f^2(x)$ is decreasing function
 - (C) f(x) has no critical point (D) f(x) = 0 does not have any real root
- 2. Let $f(x) = \min \{\phi(t), -3 \le t \le x\} \forall x \in [-3, \infty)$ where $\phi(x) = ||x-1| |x+1||$, then

(A) f(x) is non-differentiable at x = -1, 0

(B) f(x) is non-differentiable at x= - 1, 1

(C)
$$f(100)=0$$
 (D) $\int_{-3}^{10} f(x) dx = 5$

3. Let f(x) be twice differentiable function such that f''(x) > 0 in [0, 2]. Then

(A) f(0) + f(2) = 2f(c) for at least one $c \in (0, 2)$ (B) f(0) + f(2) < 2f(1)

(C)
$$f(0) + f(2) > 2f(1)$$
 (D) $2f(0) + f(2) > 3f\left(\frac{2}{3}\right)$

4. Let $f: R \to R$, such that $f''(x) - 2f'(x) + f(x) = 2e^x$ and $f'(x) > 0 \forall x \in R$, then which the following can be correct

$$(A) |f(x)| = -f(x), \forall x \in R (B) |f(x)| = f(x), \forall x \in R (C) f(3) = -5 (D) f(3) = 7$$

ROUGHT SPACE

CLASS - 12th

- 11. If $\lim_{x \to 0} \frac{1 \cos\left(1 \cos\frac{x}{2}\right)}{2^m x^n}$ is equal to left hand derivative of $e^{-|x|}$ at x = 0, then find the value of n 10m is _____
- 12. If $\lim_{n \to \infty} \frac{e\left(1 \frac{1}{n}\right)^n 1}{n^{\alpha}}$ exists and is equal to non-zero constant c, then find the value of 12(c α).

ROUGHT SPACE

CLASS - 12th

SECTION - III

Single Option Correct (+ 4, - 1, 0). Paragraph for Questions Nos. 13 to 15 Let $f(\alpha) = \lim_{x \to 1} (\sin^{2x} \alpha + \cos^{2x} \alpha)^{\frac{1}{x-1}}$. Then Number of points where $f(\alpha)$ is discontinuous in $[-\pi,\pi]$ is: 13. (A) 0 (B) 2 (C) 7 (D) None of these Which one of the following is correct? 14. (A) $f'\left(\frac{\pi}{4}\right) = 1$ (B) $f'\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$ (C) $f'\left(\frac{\pi}{4}\right) = 0$ (D) $f'\left(\frac{\pi}{4}\right) = \frac{1}{2}$ $\lim_{\alpha \to \frac{\pi}{4}} \left(f(\alpha) + f\left(\frac{\pi}{4}\right) \right)^{\frac{1}{\alpha - \frac{\pi}{4}}} \text{ is equal to}$ 15. (A) 0 (B) 1 (C) e (D) 1/e**ROUGHT SPACE**

Paragraph for Questions Nos. 16 to 18

Let
$$f(x) = \lim_{n \to \infty} (1 - \sin x + \sqrt[n]{e} \cdot \sin x)^n$$
, $n \in \mathbb{N}$ and
 $a = \frac{2}{11} \lim_{x \to 0} \left(\left[\frac{\sin x}{x} \right] + \left[\frac{2 \sin x}{x} \right] + \left[\frac{3 \sin x}{x} \right] + \dots + \left[\frac{11 \sin x}{x} \right] \right), \quad b = \lim_{x \to 0} \left(\frac{x^2}{\left[\frac{\tan x}{x} \right] - \cos x} \right).$ Where $[.] = GIF.$

- 16. The value of (a + b) is equal to:
 - (A) 2 (B) 6 (C) 10 (D) 12
- 17. Number of integral values of λ so that the equation $bx^2 b^2x + \lambda = 0$ has roots α , β such that $1 < \alpha < 2$ and $2 < \beta < 3$ is:
 - (A) 0 (B) 1 (C) 2 (D) 3
- 18. If $\lim_{u \to 0} \left[1 + \frac{u}{n} \left(1 + k^2 \right) \right]^{1/u} = 2k \ln^2 \left(f(x) \right), k > 0 \text{ and } x \in (0, \pi), \text{ then the value of } (x + k) \text{ is equal to:}$
 - (A) $1 + \frac{\pi}{4}$ (B) $1 + \frac{\pi}{2}$ (C) 1 (D) $\frac{\pi}{2}$

ROUGHT SPACE

Visit Us: https://www.mathsarc.com

	MATHSARC EDUCATION
	A learning place to fulfill your dreams of success!
mathsarc Education	

CLASS - 12th

ANSWER KEY				
1. B, C, D	2. A, C, D	3. C, D	4. B, D	
5. B, C, D	6. B, D	7. 6	8. 2	
9. 8	10. 2	11. 74	12. 6	
13. A	14. C	15. B	16. D	
17. A	18. B			

