SECTION - A (MATHEMATICS)

SECTION - I

MULTI OPTION CORRECT ($+4,-1,0$)

1. Given that f is a real valued non-constant differentiable function such that $\mathrm{f}(\mathrm{x}) . \mathrm{f}^{\prime}(\mathrm{x}) \leq 0$, for all real x, then it follows that:
(A) $f^{2}(x)$ is increasing function
(B) $f^{2}(x)$ is decreasing function
(C) $f(x)$ has no critical point
(D) $f(x)=0$ does not have any real root
2. Let $f(x)=\min .\{\phi(t),-3 \leq t \leq x\} \forall x \in[-3, \infty)$ where $\phi(x)=\|x-1|-| x+1\|$, then
(A) $f(\mathrm{x})$ is non-differentiable at $\mathrm{x}=-1,0$
(B) $f(\mathrm{x})$ is non-differentiable at $\mathrm{x}=-1,1$
(C) $f(100)=0$
(D) $\int_{-3}^{10} f(x) d x=5$
3. Let $\mathrm{f}(\mathrm{x})$ be twice differentiable function such that $f^{\prime \prime}(x)>0$ in $[0,2]$. Then
(A) $f(0)+f(2)=2 f(c)$ for atleast one $\mathrm{c} \in(0,2)(B)$
(B) $f(0)+f(2)<2 f(1)$
(C) $f(0)+f(2)>2 f(1)$
(D) $2 f(0)+f(2)>3 f\left(\frac{2}{3}\right)$
4. Let $f: R \rightarrow R$, such that $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x)=2 e^{x}$ and $f^{\prime}(x)>0 \forall x \in R$, then which the following can be correct
(A) $|f(x)|=-f(x), \forall x \in R$
(B) $|f(x)|=f(x), \forall x \in R$
(C) $f(3)=-5$
(D) $f(3)=7$

ROUGHT SPACE

5. If $\lim _{\mathrm{x} \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0$, then for $k \geq 2, k \in N$ which of the following is/are correct?
(A) $2 a+b=0$
(B) $a+2 b=0$
(C) $\lim _{\mathrm{n} \rightarrow \infty} \sec ^{2 \mathrm{n}}(k!\pi b)=1$ (D) $\lim _{\mathrm{n} \rightarrow \infty} \sec ^{2 \mathrm{n}}(k!\pi a)=1$
6. Let $f: R \rightarrow R$ defined by $f(x)=\operatorname{Min} .(|x|, 1-|x|)$. Then which of the following hold(s) good?
(A) Range of f is $(-\infty, 1]$
(B) f is aperiodic
(C) f is neither even nor odd
(D) f is neither injective nor surjective

SECTION - II

Integer Type (+ 3, 0, 0).
7. Let $\left\{x_{n}\right\}$ be a sequence satisfying the recurrence relation $x_{n+1}=\frac{\sqrt{3} x_{n}-1}{x_{n}+\sqrt{3}}(n \geq 1)$. The given sequence is periodic with period \qquad
8. If the function $f(x)=\frac{\tan (\tan x)-\sin (\sin x)}{\tan x-\sin x}(x \neq 0)$ is continuous at $x=0$, then find the value of $f(0)$.
9. The value of $\lim _{x \rightarrow 0} \frac{\log _{\sec x / 2} \cos x}{2 \log _{\sec x}(\cos x / 2)}$ is \qquad
10. Let $\alpha, \beta \in R$ be such that $\lim _{x \rightarrow 0} \frac{x^{2} \tan (\alpha x)}{\beta x-\tan (2 x)}=1$, then value of $5 \beta+3 \alpha$, is
11. If $\operatorname{Lim}_{x \rightarrow 0} \frac{1-\cos \left(1-\cos \frac{x}{2}\right)}{2^{m} x^{n}}$ is equal to left hand derivative of $e^{-|x|}$ at $x=0$, then find the value of $n-10 m$ is \qquad
12. If $\operatorname{Lim}_{n \rightarrow \infty} \frac{e\left(1-\frac{1}{n}\right)^{n}-1}{n^{\alpha}}$ exists and is equal to non-zero constant c, then find the value of $12(c-\alpha)$.

ROUGHT SPACE

SECTION - III

Single Option Correct ($+4,-1,0$).

Paragraph for Questions Nos. 13 to 15

Let $f(\alpha)=\operatorname{Lim}_{x \rightarrow 1}\left(\sin ^{2 x} \alpha+\cos ^{2 x} \alpha\right)^{\frac{1}{x-1}}$. Then
13. Number of points where $f(\alpha)$ is discontinuous in $[-\pi, \pi]$ is:
(A) 0
(B) 2
(C) 7
(D) None of these
14. Which one of the following is correct?
(A) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=1$
(B) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi}{4}$
(C) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=0$
(D) $\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=\frac{1}{2}$
15. $\quad \operatorname{Lim}_{\alpha \rightarrow \frac{\pi}{4}}\left(f(\alpha)+f\left(\frac{\pi}{4}\right)\right)^{\frac{1}{\alpha-\frac{\pi}{4}}}$ is equal to
(A) 0
(B) 1
(C) e
(D) $1 / \mathrm{e}$

ROUGHT SPACE

Paragraph for Questions Nos. 16 to 18

$\operatorname{Let} f(x)=\operatorname{Lim}_{n \rightarrow \infty}(1-\sin x+\sqrt[n]{e} \cdot \sin x)^{n}, n \in N$ and
$a=\frac{2}{11} \operatorname{Lim}_{x \rightarrow 0}\left(\left[\frac{\sin x}{x}\right]+\left[\frac{2 \sin x}{x}\right]+\left[\frac{3 \sin x}{x}\right]+\ldots+\left[\frac{11 \sin x}{x}\right]\right), b=\operatorname{Lim}_{x \rightarrow 0}\left(\frac{x^{2}}{\left[\frac{\tan x}{x}\right]-\cos x}\right)$. Where [.] = GIF.
16. The value of $(a+b)$ is equal to:
(A) 2
(B) 6
(C) 10
(D) 12
17. Number of integral values of λ so that the equation $b x^{2}-b^{2} x+\lambda=0$ has roots α, β such that $1<\alpha<2$ and $2<\beta<3$ is:
(A) 0
(B) 1
(C) 2
(D) 3
18. If $\underset{u \rightarrow 0}{\operatorname{Lim}}\left[1+\frac{u}{n}\left(1+k^{2}\right)\right]^{1 / u}=2 k \ln ^{2}(f(x)), k>0$ and $x \in(0, \pi)$, then the value of $(x+k)$ is equal to:
(A) $1+\frac{\pi}{4}$
(B) $1+\frac{\pi}{2}$
(C) 1
(D) $\frac{\pi}{2}$

ROUGHT SPACE

Visit Us: https://www.mathsarc.com

1. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
2. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
3. C, D
4. B, D
5. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
6. B, D
7. 6
8. 2
9. 8
10. 2
11. 74
12. 6
13. A
14. C
15. B
16. D
17. A
18. B

